Das Forschungsprojekt “iC4“ hat sich zur Aufgabe gemacht, die schon seit 100 Jahren bekannte Umwandlung von Kohlendioxid in künstliches Erdgas so zu optimieren, dass sie als Speichertechnologie konkurrenzfähig werden soll.
Wissenschaftler der Technischen Universität München (TUM) entwickeln zusammen mit Forschern der Wacker Chemie AG und der Clariant AG Katalysatoren für die Umwandlung von Kohlendioxid in Methan. Der dafür benötigte Wasserstoff wird durch Elektrolyse von Wasser mit Überschussstrom gewonnen.
Im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts iC4 (integrated Carbon Capture, Conversion and Cycling) testeten die Wissenschaftler mehr als 250 Katalysatorsysteme - sowohl bereits verfügbare als auch im Rahmen des Projekts neu entwickelte. Die erfolgversprechendsten Kandidaten optimieren sie weiter.
In der Pilotanlage der MAN Diesel & Turbo SE am Standort Deggendorf erreichen die ersten Katalysatoren inzwischen Ausbeuten im Bereich zwischen 92 und mehr als 95 % und damit genug Methan, um das Gas ins Erdgasnetz einzuspeisen. Den Forschern des Projekts geht es vor allem darum, den genauen Ablauf der Umsetzung und die Reaktionen an den Oberflächen der Katalysatoren zu erforschen. „Dieses Wissen ist der Schlüssel zu einer wirtschaftlichen Methanherstellung in großtechnischen Maßstab“, sagt Prof. Bernhard Rieger, Inhaber des Wacker-Lehrstuhls für Makromolekulare Chemie der TU München und Sprecher des iC4-Konsortiums.
Synthetisches Erdgas als Energiespeicher
„Wir können weder so viele Batterien herstellen noch so viele Pumpspeicherkraftwerke bauen, um die zukünftig zu erwartenden Differenzen zwischen Stromproduktion und Stromverbrauch auszugleichen“, sagt Professor Rieger „Der einzige Weg so große Energiemengen zu speichern, führt über die chemische Speicherung.“
Methan erscheint den Forschern als Speicherform besonders wertvoll, da es bereits ein deutschlandweites Verteilnetz für Erdgas gibt und Speicherkapazitäten, die selbst eine Flaute von mehreren Wochen überbrücken könnten. Darüber hinaus gibt es jahrzehntelange Erfahrung mit der Verwendung von Erdgas als Treibstoff für Autos.
Auch der Rohstoff der Reaktion, das Kohlendioxid, ist in großen Mengen verfügbar: Natürliches Erdgas enthält neben seinem Energieträger Methan auch bis zu 10 % Kohlendioxid. Biogasanlagen produzieren neben Methan bis zu 50 % Kohlendioxid. Die größten Kohlendioxidquellen sind jedoch Kraftwerke, die Kohle, Öl oder Gas verbrennen und energieintensive Prozesse wie die Zementherstellung oder die Metallgewinnung.
Eine Herausforderung bei der Nutzung dieser Kohlendioxidquellen ist die Reinheit des Kohlendioxids. Rauchgase enthalten aggressives Schwefeldioxid, Biogas enthält ebenfalls Schwefelverbindungen. Der optimale Katalysator sollte gegenüber solchen Störsubstanzen möglichst unempfindlich sein.
Eine weitere Herausforderung stellt die mehrstufige, viel Energie frei setzende Reaktion an sich dar: „Zwar gibt es schon erste Demonstrationslagen zur Methanherstellung, doch noch ist die Reaktionskinetik der verschiedenen Teilreaktionen nicht vollständig verstanden“, sagt Professor Rieger. Ein wichtiges Ziel der Forschungsarbeit ist daher die theoretische Modellierung der Reaktionen am Computer. Für die Entwicklung effizienter Großanlagen sind solche Modellrechnungen eine wichtige Grundlage.
Das Verbundprojekt zur Nutzung von Kohlendioxid als Energiespeicher gliedert sich in vier Säulen: Abtrennung von Kohlendioxid aus Erdgas und Biogas, Abtrennung von Kohlendioxid aus Abgasen (Kraftwerke, Zementindustrie, …), katalytische Umwandlung von Kohlendioxid zu Methan, und direkte stoffliche Nutzung von Kohlendioxid durch Photokatalyse.